联系我们 | 网站地图 | English | 中国科学院
首页 机构概况 科研成果 研究队伍 国际交流 院地合作 研究生教育 创新文化 党群园地 科学传播 信息公开
机构概况
所况简介
所长致辞
现任领导
历任领导
学术委员会
学位委员会
组织机构
历史沿革
院所风貌
联系方式
研究室
资源化学研究室
材料物理与化学研究室
多语种信息技术研究室
环境科学与技术研究室
重点实验室
植物资源化学重点实验室
中国科学院特殊环境功能材料与器件重点实验室
电子信息材料与器件重点实验室
新型光电功能材料实验室
固体辐射物理实验室
新疆精细化工工程技术研究中心
现在位置:首页 > 研究所简报
新疆理化所2017年第四期情况简报
2017-04-28 | 作者: | 【 】【打印】【关闭

 

  2017年     第四期 

      

  新疆理化所在基于光电肖特基结传感器的爆炸物气氛人工嗅觉系统开发方面取得重要进展 

  爆炸相关的恐怖袭击对全球安全和稳定造成了巨大的威胁,探索可靠的痕量爆炸物气氛检测方法是有效遏制爆炸恐怖袭击的有效手段之一。目前,用于痕量爆炸物检测的方法主要有离子迁移谱、荧光、拉曼光谱和气敏传感。其中,基于电学传感器的气敏检测方法以非接触、采样简单、可靠性高等优势而备受关注。然而,由于在实际场景中,爆炸物蒸气浓度会低于ppb(十亿分之一)甚至ppq(千万亿分之一)级别。因此,吸附在纳米材料表面的爆炸物分子极少,这就需要传感器在实际检测时具有极高的灵敏度。针对此问题,中科院新疆理化技术研究所环境科学与技术研究室科研人员开发了基于TiO2插层调节的高灵敏硝基爆炸物气氛肖特基结,能够实现对TNTDNTPNTPARDXHMX等硝基爆炸物在ppbppq浓度范围的检测(Adv. Funct. Mater., 2015, 25, 4039)。  

  然而,单个电学传感器只能检测但不能够识别爆炸物,需要传感器阵列才能使爆炸物的识别成为可能。自然嗅觉系统在气体检测方面具有超高的灵敏度,可达到0.1飞摩尔,对设计和构建痕量气氛传感器具有十分重要的借鉴作用。传感器阵列的构建类似于人工嗅觉系统,将有利于爆炸物蒸气的识别检测。一般意义上,传感器阵列通过一组实体传感器协同工作,如课题组前期通过ZnS纳米晶结构调控构建的传感器阵列可实现爆炸物气氛的识别(Adv. Funct. Mater., 2016, 26, 4578–4586)。然而,传统意义上的传感器阵列如果其中的一个传感器不能工作,整个传感器阵列的识别能力都会受到影响。因此,如何简化传感器阵列的结构,并在此基础上实现对爆炸物气氛的高灵敏识别检测,不仅具有十分重要的现实意义,而且颇具挑战。  

  基于此,课题组首先构建了石墨烯/氧化锌/硅纳米线三元肖特基结作为检测爆炸物气氛的高灵敏传感材料。在此基础上,巧妙的通过调节单色LED光源的光强调制传感器性能。例如,通过调节468 nm单色LED光源形成8种不同光强周期性照射肖特基结,即可得到由8个传感器组成的传感器阵列。该设计中,光的施加会产生三种作用:1)调控肖特基势垒的高度;2)调控载流子浓度;3)调控分析物的吸附-脱附平衡。因此,对于同一种爆炸物气氛,在8种不同光强下,肖特基结会产生8个不同的响应值。另外,由于不同的爆炸物分子得到电子和失去电子的能力不同,因而,对于不同的爆炸物,肖特基结即使在同一种光强下呈现出的响应大小也不一样。最后,通过主成分分析方法对响应数据进行分析处理,实现了对TNTDNTPNTPARDXUreaBP(黑火药)和AN(硝铵)等8种制式及非制式爆炸物的高灵敏、快速识别检测。相比于传统的传感器阵列,该传感器阵列基于单个传感器即可实现阵列检测的功能,同时,大大节约了传感器阵列的制备工序,并从原理上显著提升了阵列的稳定性。不仅如此,该方案在检测不同浓度的同一种爆炸物时,其响应数据在主成分空间中会落在一个线性区,因此,利用该光电肖特基结传感器检测未知的爆炸物,不仅能够实现爆炸物的识别,而且可以实现半定量分析。  

  该研究中的基于一个传感器构建传感器阵列,亦即人工嗅觉系统的方案为简化传感器阵列构建步骤,开发具有识别功能的爆炸物气氛传感器提供了新的思路。同时,该研究思路亦可为其它痕量气氛传感器的设计提供借鉴。  

  日前,相关研究成果在线发表在材料领域著名刊物Advanced Materials上。该工作得到了国家自然科学基金、中科院“百人计划”等项目的资助。 

    

  新疆理化所在原子尺度揭示固液相变机制 

  中国科学院新疆理化技术研究所环境科学与技术研究室的科研人员在固液可逆相变原子机制研究中取得重要进展。相关成果以“In situ study on atomic mechanism of melting and freezing of single bismuth nanoparticles”为题发表在213日刊出的Nature子刊《Nature Communications》上。据悉,这是新疆地区科研院校首次以第一单位和唯一通讯单位在Nature子刊发表的研究论文。王传义研究员和李英宣副研究员为本论文的共同通讯作者。  

  液固之间的相变是普遍存在的自然现象,也是物理、化学、生命、材料和环境等科学研究的基本过程,广泛涉及到工业生产及科学研究领域。但是,目前对于液固之间相变的原子机制仍然是最引人注目的科学谜团之一。长期以来,对相变的认识局限于经典的成核生长方式进行的非均相转变。实际上相变是一个复杂的过程,涉及晶体结构或电子结构的变化,在原子尺度记录相变的微观动力学过程则是认识相变微观机制的关键。遗憾的是,由于液固相变可能存在的不连续、速率快、且发生的空间范围很小(原子尺度)等特点,实验上对液固相变过程中微观结构的变化进行全面和详细记录受到了极大的限制,进而制约了人们对其动力学行为的理解和认识。   

  新疆理化王传义研究团队在前期研究中利用光化学还原法,在氧化物SrBi2Ta2O9基底上实现了原位生长金属Bi纳米粒子(Chem. Mater. 2013, 25, 20452050),提出了光化学拓扑的新概念。在此基础上,利用原位高分辨透射电镜分析方法,通过高分辨透射电镜电子束激发SrBi2Ta2O9样品,实现该材料中金属Bi的选择性还原,制备出了液态金属Bi纳米粒子,并在原子尺度上记录了纳米液滴形成的动力学过程,巧妙地实现在操纵纳米液滴生长的同时跟踪到纳米液滴从无到有的整个微观动力学过程,首次在实验上观察到了金属纳米液滴通过StranskiKrastanov 生长模型的成核过程,证实纳米液滴的成核过程远比经典成核过程复杂。相关研究结果发表在ACS NanoACS Nano 2016, 10, 23862391)上。  

  ACS Nano论文报道的制备Bi纳米液滴的基础上,进一步通过原位高分辨透射电镜,利用固态和液态Bi导热性的差异,巧妙地实现了Bi纳米粒子在SrBi2Ta2O9基底上温度的自动调控,实现了固液可逆相变。同时,以Bi纳米粒子为模型体系,首次在原子尺度上实时观察到了固液可逆相变在成核之前、成核、生长的整个微观动力学过程。在固-液相变过程中观察到了以缺陷作为成核位点的异相成核生长机制。成核后的相变过程并不是通常认为的单体增加机制,而是通过纳米粒子内部不同部分的相互作用,使得整个纳米粒子达到一个介稳中间态,最后整个纳米粒子发生由固态到液态的突变。在液-固相变中观察到了通过一种有序液体中间态的两步结晶机制。首先是各向同性的纳米液滴发生突变,整个纳米液滴转化为一种有序液体,这种有序液体的生成使体系的熵减小,降低了固相晶核在纳米液滴内部成核自由能,进而这种有序液体可作为模板,使整个纳米粒子变为一种介于无序和有序晶体结构的中间介稳相,由此固相晶核开始在这种过渡态的边缘成核和生长,最终实现液-固相转变。这一发现为液固可逆相变提供了一个新的微观结构演化的物理图像。研究人员进一步发现,虽然固液可逆相变是完全相反的两个过程,但其转换本质却存在着非凡的内在统一性,即在成核之前都经历一种有序性介于晶体和液体之间,类似于扭曲晶体结构的中间态,相变过程则是非局域性的、多尺度的、是体系内部不同部分之间协同作用的结果,这个发现给出了液固相变新的见解。在以上原子机制观察基础上,提出了一种“作用-松弛”的介尺度相变模型,加深了对相变原子机制的理解,为今后进一步在理论上深入认识相变这一重要的科学问题提供了新的思路。该研究成果也为液固之间相变动力学行为提供了普适性认识,同时为进一步深入认识和理解相变微观机制等关键科学问题提供了新的分析方法和思路。  

  该研究得到国家自然科学基金、中科院创新国际团队、中科院卓越青年科学家、中科院“西部之光”等项目资助。 

    

  新疆理化所在光学各向异性理论研究方面取得进展 

  光学各向异性是材料的一个本征属性,而它的强弱决定着光电功能材料的应用。随着社会需求的提高与科技的发展,在信息,能源科技、医疗及军事领域上,对材料的性能提出更高的要求。在探索新材料的过程中,研究微观结构对材料性能的贡献及对外场的响应对探索新材料有指导意义并且可以缩短新材料的研发周期加快材料的发展步伐。因此,探索出对材料性能起决定性的“基因”,对材料发展这个“基因工程”具有非凡的意义。    

  中国科学院新疆理化技术研究所新型光电功能材料实验室潘世烈研究团队近年来致力于新型线性与非线性光学晶体设计研究。在光学材料中,光学各向异性决定材料的双折射率,大的双折射率晶体可用于光纤通信中的无源器件,如:光隔离器、旋光器、延迟器、偏振器等。而在非线性光学晶体中,光学各向异性决定角度相位匹配的波长范围从而决定非线性光学材料的使用范围与应用前景。课题组博士研究生雷兵华在研究员杨志华与研究员潘世烈的指导下,以经典双折射率材料YVO4作为模版结合非简谐振子物理图像提出了评估晶体材料光学各向异性模型—响应电荷分布各向异性(REDA)模型。该模型指出键电荷分布的各向异性决定光学各向异性,影响响应键电荷分布的离子或基团为光学各向异性的“基因”片断。文中对在可见光区不能实现角度相位匹配的化合物BPO4的键电荷分布进行理论模拟优化,增强材料的光学各向异性,使其在理论上成功输出深紫外相干光。因此,此模型既可分析出“基因”片断,也可作为线性与非线性光学材料的设计与合成的理论工具,为材料的设计与合成提供新的思路与方向。相关研究成果作为特色封面文章发表在《化学通讯》(Chemical Communications2017, DOI: 10.1039/C6CC09986F)上。  

  该研究工作得到国家青年973项目与国家自然科学基金等项目的支持。 

         

  新疆理化所在极性材料光催化研究方面取得系列进展 

  极性材料由于分子基元在晶体中的各向异性使得晶胞中一些基团的正、负电中心并非重合,存在本征偶极矩,产生自发极化电场。目前这类材料主要应用于非线性光学、铁电、功能性陶瓷与薄膜等。  

  中科院新疆理化技术研究所环境科学与技术研究室的科研人员在具有内建电场的硼氧结构基元的极性光催化材料的制备及应用方面取得系列进展。研究人员分析了该类材料对氯酚类污染物的去除能力,结合开尔文探针力显微实验证实了内建电场的存在(Chemistry of Materials, 2014, 26, 3169);借助密度泛函理论(DFT)手段确证了极性材料电子结构及光生电荷转移过程(Journal of Materials Chemistry A, 2015, 3, 12179);考察了在不同金属离子半径下作用下导致的不同极化场对有机污染物降解性能的影响(Applied Catalysis B: Environmental, 2016, 181, 436.)。  

  近日,该实验室科研人员又设计和制备了B-O结构基元与具有d0电子构型的金属离子复合的极性光催化材料,发现该类材料在去除卤代烃类方面具有优异的性能。在10分钟对难降解氟取代酚类仍然具有高达83%的去除能力。该实验结果归因于具有d0电子结构金属离子形成的金属多面体的与B-O结构多面体的协同作用增大了材料宏观极化电场提高了载流子的分离能力。该工作发表于《应用催化B:环境》(Applied Catalysis B: Environmental, 2017, DOI:10.1016/j.apcatb.2017.01.016.)  

  但是,是否材料极性越大其活性越高,值得科研人员进行进一步研究。为此,科研人员又合成了极化能力不同的四种等构的极性材料。文章通过X-射线粉末衍射、紫外可见漫反射、单晶结构解析、光电化学、离子色谱、高效液相色谱,原子力显微、开尔文探针力显微及理论计算等分析详细考察了材料的单晶结构、光响应范围、电荷转移过程,吸附能,降解过程、及降解过程中的化学组成变化及其降解机理。有意义的是,实验发现了光催化活性虽然与其极化能力有着一定的联系,但并不尽然。对于部分材料随着极化能力增加而增加,而当极化能力增加到一定程度的时候其活性还与材料的表面电势变化及吸附能紧密相关。  

  该工作得到审稿人的高度肯定发表于《材料化学》(Chemistry of materiasl, 2016, DOI:10.1021/acs.chemmater.6b04082)。    

  上述工作受到国家、中国科学院及地方政府相关机构经费支持。 

附件下载
相关新闻
欢迎访问中国科学院新疆理化技术研究所网站 新ICP备06001362号
地址:新疆乌鲁木齐市北京南路40-1号  邮编:830011  咨询、建议电话:0991-3835823 传 真:0991-3838957